首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1583篇
  免费   330篇
  国内免费   429篇
  2024年   4篇
  2023年   81篇
  2022年   64篇
  2021年   79篇
  2020年   148篇
  2019年   133篇
  2018年   122篇
  2017年   129篇
  2016年   112篇
  2015年   120篇
  2014年   98篇
  2013年   155篇
  2012年   97篇
  2011年   96篇
  2010年   76篇
  2009年   81篇
  2008年   98篇
  2007年   79篇
  2006年   81篇
  2005年   57篇
  2004年   46篇
  2003年   50篇
  2002年   51篇
  2001年   40篇
  2000年   29篇
  1999年   24篇
  1998年   26篇
  1997年   13篇
  1996年   14篇
  1995年   12篇
  1994年   15篇
  1993年   8篇
  1992年   11篇
  1991年   11篇
  1990年   10篇
  1989年   5篇
  1988年   4篇
  1987年   10篇
  1986年   5篇
  1985年   6篇
  1984年   12篇
  1983年   6篇
  1982年   6篇
  1980年   4篇
  1978年   3篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1958年   5篇
排序方式: 共有2342条查询结果,搜索用时 15 毫秒
71.
Savanna tree–grass interactions may be particularly sensitive to climate change. Establishment of two tree canopy dominants, post oak (Quercus stellata) and eastern redcedar (Juniperus virginiana), grown with the dominant C4 perennial grass (Schizachyrium scoparium) in southern oak savanna of the United States were evaluated under four climatic scenarios for 6 years. Tree–grass interactions were examined with and without warming (+1.5 °C) in combination with a long‐term mean rainfall treatment and a modified rainfall regime that redistributed 40% of summer rainfall to spring and fall, intensifying summer drought. The aim was to determine: (1) the relative growth response of these species, (2) potential shifts in the balance of tree–grass interactions, and (3) the trajectory of juniper encroachment into savannas, under these anticipated climatic conditions. Precipitation redistribution reduced relative growth rate (RGR) of trees grown with grass. Warming increased growth of J. virginiana and strongly reduced Q. stellata survival. Tiller numbers of S. scoparium plants were unaffected by warming, but the number of reproductive tillers was increasingly suppressed by intensified drought each year. Growth rates of J. virginiana and Q. stellata were suppressed by grass presence early, but in subsequent years were higher when grown with grass. Quercus stellata had overall reduced RGR, but enhanced survival when grown with grass, while survival of J. virginiana remained near 100% in all treatments. Once trees surpassed a threshold height of 1.1 m, both tiller number and survival of S. scoparium plants were drastically reduced by the presence of J. virginiana, but not Q. stellata. Juniperus virginiana was the only savanna dominant in which neither survival nor final aboveground mass were adversely affected by the climate scenario of warming and intensified summer drought. These responses indicate that climate warming and altered precipitation patterns will further accelerate juniper encroachment and woody thickening in a warm‐temperate oak savanna.  相似文献   
72.
Although striking changes have been documented in plant and animal phenology over the past century, less is known about how the fungal kingdom's phenology has been changing. A few recent studies have documented changes in fungal fruiting in Europe in the last few decades, but the geographic and taxonomic extent of these changes, the mechanisms behind these changes, and their relationships to climate are not well understood. Here, we analyzed herbarium data of 274 species of fungi from Michigan to test the hypotheses that fruiting times of fungi depend on annual climate and that responses depend on taxonomic and functional groups. We show that the fungal community overall fruits later in warmer and drier years, which has led to a shift toward later fruiting dates for autumn‐fruiting species, consistent with existing evidence. However, we also show that these effects are highly variable among species and are partly explained by basic life‐history characteristics. Resulting differences in climate sensitivities are expected to affect community structure as climate changes. This study provides a unique picture of the climate dependence of fungal phenology in North America and an approach for quantifying how individual species and broader fungal communities will respond to ongoing climate change.  相似文献   
73.
Effects of grazing on grassland soil carbon: a global review   总被引:2,自引:0,他引:2  
Soils of grasslands represent a large potential reservoir for storing CO2, but this potential likely depends on how grasslands are managed for large mammal grazing. Previous studies found both strong positive and negative grazing effects on soil organic carbon (SOC) but explanations for this variation are poorly developed. Expanding on previous reviews, we performed a multifactorial meta‐analysis of grazer effects on SOC density on 47 independent experimental contrasts from 17 studies. We explicitly tested hypotheses that grazer effects would shift from negative to positive with decreasing precipitation, increasing fineness of soil texture, transition from dominant grass species with C3 to C4 photosynthesis, and decreasing grazing intensity, after controlling for study duration and sampling depth. The six variables of soil texture, precipitation, grass type, grazing intensity, study duration, and sampling depth explained 85% of a large variation (±150 g m?2 yr?1) in grazing effects, and the best model included significant interactions between precipitation and soil texture (P = 0.002), grass type, and grazing intensity (P = 0.012), and study duration and soil sampling depth (P = 0.020). Specifically, an increase in mean annual precipitation of 600 mm resulted in a 24% decrease in grazer effect size on finer textured soils, while on sandy soils the same increase in precipitation produced a 22% increase in grazer effect on SOC. Increasing grazing intensity increased SOC by 6–7% on C4‐dominated and C4–C3 mixed grasslands, but decreased SOC by an average 18% in C3‐dominated grasslands. We discovered these patterns despite a lack of studies in natural, wildlife‐dominated ecosystems, and tropical grasslands. Our results, which suggest a future focus on why C3 vs. C4‐dominated grasslands differ so strongly in their response of SOC to grazing, show that grazer effects on SOC are highly context‐specific and imply that grazers in different regions might be managed differently to help mitigate greenhouse gas emissions.  相似文献   
74.
Peatlands store approximately 30% of global soil carbon, most in moss‐dominated bogs. Future climatic changes, such as changes in precipitation patterns and warming, are expected to affect peat bog vegetation composition and thereby its long‐term carbon sequestration capacity. Theoretical work suggests that an episode of rapid environmental change is more likely to trigger transitions to alternative ecosystem states than a gradual, but equally large, change in conditions. We used a dynamic vegetation model to explore the impacts of drought events and increased temperature on vegetation composition of temperate peat bogs. We analyzed the consequences of six patterns of summer drought events combined with five temperature scenarios to test whether an open peat bog dominated by moss (Sphagnum) could shift to a tree‐dominated state. Unexpectedly, neither a gradual decrease in the amount of summer precipitation nor the occurrence of a number of extremely dry summers in a row could shift the moss‐dominated peat bog permanently into a tree‐dominated peat bog. The increase in tree biomass during drought events was unable to trigger positive feedbacks that keep the ecosystem in a tree‐dominated state after a return to previous ‘normal’ rainfall conditions. In contrast, temperature increases from 1 °C onward already shifted peat bogs into tree‐dominated ecosystems. In our simulations, drought events facilitated tree establishment, but temperature determined how much tree biomass could develop. Our results suggest that under current climatic conditions, peat bog vegetation is rather resilient to drought events, but very sensitive to temperature increases, indicating that future warming is likely to trigger persistent vegetation shifts.  相似文献   
75.
76.
Purpose: Crosstalk between Aurora-A kinase and p53 has been proposed. While the genetic amplification of Aurora-A has been observed in many human cancers, how p53 is regulated by Aurora-A remains ambiguous. In this study, Aurora-A-mediated phosphorylation of p53 was analyzed by mass spectrometry in order to identify a new phosphorylation site. Subsequently, the functional consequences of such phosphorylation were examined. Experimental design: In vitro phosphorylation of p53 by Aurora-A was performed and the phosphorylated protein was then digested with trypsin and enriched for phosphopeptides by immobilized metal affinity chromatography. Subsequently, a combination of β-elimination and Michael addition was applied to the phosphopeptides in order to facilitate the identification of phosphorylation sites by MS. The functional consequences of the novel phosphorylation of p53 on the protein–protein interactions, protein stability and transactivation activity were then examined using co-immunoprecipitation, Western blotting and reporter assays. Results: Ser-106 of p53 was identified as a novel site phosphorylated by Aurora-A. A serine-to-alanine mutation at this site was found to attenuate Aurora-A-mediated phosphorylation in vitro. In addition, phosphate-sensitive Phos-tag SDS-PAGE was used to confirm that the Ser-106 of p53 is in vivo phosphorylated by Aurora-A. Finally, co-immunoprecipitation studies suggested that Ser-106 phosphorylation of p53 decreases its interaction with MDM2 and prolongs the half-life of p53. Conclusions: The inhibition of the interaction between p53 and MDM2 by a novel Aurora-A-mediated p53 phosphorylation was identified in this study and this provides important information for further investigations into the interaction between p53 and Aurora-A in terms of cancer biology.  相似文献   
77.
Defining the target population based on predictive biomarkers plays an important role during clinical development. After establishing a relationship between a biomarker candidate and response to treatment in exploratory phases, a subsequent confirmatory trial ideally involves only subjects with high potential of benefiting from the new compound. In order to identify those subjects in case of a continuous biomarker, a cut-off is needed. Usually, a cut-off is chosen that resulted in a subgroup with a large observed treatment effect in an exploratory trial. However, such a data-driven selection may lead to overoptimistic expectations for the subsequent confirmatory trial. Treatment effect estimates, probability of success, and posterior probabilities are useful measures for deciding whether or not to conduct a confirmatory trial enrolling the biomarker-defined population. These measures need to be adjusted for selection bias. We extend previously introduced Approximate Bayesian Computation techniques for adjustment of subgroup selection bias to a time-to-event setting with cut-off selection. Challenges in this setting are that treatment effects become time-dependent and that subsets are defined by the biomarker distribution. Simulation studies show that the proposed method provides adjusted statistical measures which are superior to naïve Maximum Likelihood estimators as well as simple shrinkage estimators.  相似文献   
78.
Recurrent event data are commonly encountered in biomedical studies. In many situations, they are subject to an informative terminal event, for example, death. Joint modeling of recurrent and terminal events has attracted substantial recent research interests. On the other hand, there may exist a large number of covariates in such data. How to conduct variable selection for joint frailty proportional hazards models has become a challenge in practical data analysis. We tackle this issue on the basis of the “minimum approximated information criterion” method. The proposed method can be conveniently implemented in SAS Proc NLMIXED for commonly used frailty distributions. Its finite-sample behavior is evaluated through simulation studies. We apply the proposed method to model recurrent opportunistic diseases in the presence of death in an AIDS study.  相似文献   
79.
80.
Bioinformatics tools have facilitated the reconstruction and analysis of cellular metabolism of various organisms based on information encoded in their genomes. Characterization of cellular metabolism is useful to understand the phenotypic capabilities of these organisms. It has been done quantitatively through the analysis of pathway operations. There are several in silico approaches for analyzing metabolic networks, including structural and stoichiometric analysis, metabolic flux analysis, metabolic control analysis, and several kinetic modeling based analyses. They can serve as a virtual laboratory to give insights into basic principles of cellular functions. This article summarizes the progress and advances in software and algorithm development for metabolic network analysis, along with their applications relevant to cellular physiology, and metabolic engineering with an emphasis on microbial strain optimization. Moreover, it provides a detailed comparative analysis of existing approaches under different categories.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号